Finite Element Analysis of porously punched prosthetic short stem virtually designed for simulative uncemented Hip Arthroplasty

نویسندگان

  • Matthew Jian-Qiao Peng
  • Hai-Yan Chen
  • Yong Hu
  • XiangYang Ju
  • Bo Bai
چکیده

BACKGROUND There is no universal hip implant suitably fills all femoral types, whether prostheses of porous short-stem suitable for Hip Arthroplasty is to be measured scientifically. METHODS Ten specimens of femurs scanned by CT were input onto Mimics to rebuild 3D models; their *stl format dataset were imported into Geomagic-Studio for simulative osteotomy; the generated *.igs dataset were interacted by UG to fit solid models; the prosthesis were obtained by the same way from patients, and bored by punching bears designed by Pro-E virtually; cements between femora and prosthesis were extracted by deleting prosthesis; in HyperMesh, all compartments were assembled onto four artificial joint style as: (a) cemented long-stem prosthesis; (b) porous long-stem prosthesis; (c) cemented short-stem prosthesis; (d) porous short-stem prosthesis. Then, these numerical models of Finite Element Analysis were exported to AnSys for numerical solution. RESULTS Observed whatever from femur or prosthesis or combinational femora-prostheses, "Kruskal-Wallis" value p > 0.05 demonstrates that displacement of (d) ≈ (a) ≈ (b) ≈ (c) shows nothing different significantly by comparison with 600 N load. If stresses are tested upon prosthesis, (d) ≈ (a) ≈ (b) ≈ (c) is also displayed; if upon femora, (d) ≈ (a) ≈ (b) < (c) is suggested; if upon integral joint, (d) ≈ (a) < (b) < (c) is presented. CONCLUSIONS Mechanically, these four sorts of artificial joint replacement are stabilized in quantity. Cemented short-stem prostheses present the biggest stress, while porous short-stem & cemented long-stem designs are equivalently better than porous long-stem prostheses and alternatives for femoral-head replacement. The preferred design of those two depends on clinical conditions. The cemented long-stem is favorable for inactive elders with osteoporosis, and porously punched cementless short-stem design is suitable for patients with osteoporosis, while the porously punched cementless short-stem is favorable for those with a cement allergy. Clinically, the strength of this study is to enable preoperative strategy to provide acute correction and decrease procedure time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Design Optimization of Hip Resurfacing Prosthesis Using Finite Element Analysis

Hip resurfacing is an alternative to total hip arthroplasty for the young and active patient likely to outlive traditional means of hip joint replacement. To optimize design on the hip resurfacing prosthetic stress profile in the proximal femur after hip resurfacing. The acetabular cup is implanted in much the same fashion as an uncemented total hip arthroplasty, however, implantation of the fe...

متن کامل

Challenges of Plate Fixation for Vancouver Type-C Fractures after a Well-Fixed Hip Arthroplasty Femoral Stem

The fixation of distal femoral fractures (Vancouver type-C fractures) following a well-fixed hip arthroplasty femoral stem has become a challenging issue for orthopedic surgeons due to the inter-prosthetic biomechanical effects such as negative, positive, and torsional strain. Surgeons have applied a range of constructs to overcome these difficulties. To minimize the risk of inter-prosthetic fr...

متن کامل

Initial Stability of Subtrochanteric Oblique Osteotomy in Uncemented Total Hip Arthroplasty: A Preliminary Finite Element Study

BACKGROUND Subtrochanteric oblique osteotomy (SOO) has been widely used to reconstruct highly dislocated hips in uncemented total hip arthroplasty. The occurrence of complications can be attributed to the instability of the osteotomy region. The aim of this study was to evaluate the initial stability of SOO in uncemented total hip arthroplasty. MATERIAL AND METHODS A 3-dimensional finite elem...

متن کامل

Finite Element Analysis of Different Hip Implant Designs along with Femur under Static Loading Conditions

Background: The hip joint is the largest joint after the knee, which gives stability to the whole human structure. The hip joint consists of a femoral head which articulates with the acetabulum. Due to age and wear between the joints, these joints need to be replaced with implants which can function just as a natural joint. Since the early 19th century, the hip joint arthroplasty has evolved, a...

متن کامل

ارزیابی عملکرد بیماران پس از آرتروپلاستی هیپ با پروتز Short-stem و Standard-stem : کارآزمایی بالینی تصادفی

Background: Short-stem prosthesis for total hip arthroplasty (THA) have been designed to overcome the weakness of standard-stem prostheses and improve surgical outcomes. The aim of this study was to compare short-stem with standard-stem prosthesis outcomes. Methods: This study was performed as a randomized clinical trial. Subjects were selected among patients referred to Sina University Hospit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017